Расстояние между двумя параллельными прямыми равно 24. На одной из них взята точка С,
а на другой взяты точки А и В так, что треугольник АВС - остроугольный равнобедренный, и его боковая сторона равна 25. Найдите радиус окружности, описанной около треугольника АВС.
Автор: Себедаш Ольга Просмотров: 7402 Скачиваний: 5 Извините, но в данный момент скачивание закрытоВы всегда можете посмотреть много других замечательных и бесплатных роликов в разделе «Видео: бесплатные уроки»
Спасибо вам огромное!Все ясно и понятно,без всяких заморочек!Очень благодарна вам!
Какая умница, спасибо Вам!!!
Спасибо большое! Только мне кажется, что гораздо проще воспользоваться во втором случае формулой R=abc/4S.
Галина, мне кажется, что если можно избежать какой-то специальной формулы, то надо её избегать) Формулы учииииить надо, а делают это далеко не все.
Спасибо. Очень даже понятно!
Радиус описанной окружности удобно находить по теореме синусов:
a/sinA=2R.
Да, Инна, существуют и другие способы поиска радиуса, их немало. Для данной задачи я просто выбрала наилучший, как мне показалось :)
А почему в первом случае нельзя было умножить расстояние на на 2/3?
Огромное человеческое спасибо)
а где еще можно достать С4 только немного другие?